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Abstract: 

In this paper, using theory of sheets, the deflection of suspended diaphragm has been obtained under uniform and 

circular loading. This type of diaphragm, unlike other diaphragms, has a central support which is recommended to be 

used in MEMS applications. The relationship between diaphragm deflection and static analysis of this diaphragm 

enjoys a great significance in investigating and understanding its behavior and calculating its other practical parameters 

both in dynamic and static fields. Here, using the thin sheet Kirchhoff-Law theory these issues are addressed. The 

results of analysis and simulation have been compared with each other, representing the 1% accuracy of the obtained 

statements, suggesting accuracy of the obtained results. The results show that the suspended diaphragm has greater 

deflection compared to simple flat diaphragm, which is considered important in sensors and micro electromechanical 
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1. Introduction

Sheets are one of the suitable options in many 

applications. Analysis of the behavior of sheets on their 

loading helps designers to evaluate and optimize their 

structure. In the first time in 1776, Euler examined 

sheets theoretically and analyzed their free vibration 

[1]. Bernoulli, based on Euler theory, assuming that 

sheets are a set of beams, tried to analyze sheets, but he 

did not find satisfactory results. French Germean stated 

an independent differential equation for the sheet. 

Then, Lagrange in 1813 corrected it and considered the 

term which was not included in Germean equations. 

However, for the first time Kuchi and Poisson in 1829 

formulated sheet bending equations based on theory of 

elasticity, which were in line with Lagrange results. 

Nevertheless, Navier by considering the thickness of 

sheet and its effect on bending stiffness D presented the 

correct relationship, and converted differential relations 

to algebraic expressions through Fourier relations. In 

1850, Kirchhoff published a thesis and stated two basic 

and independent assumptions, through which he 

analyzed thin sheets. Lord Kelvin and Tit converted 

torsion couple to sheer force on the edges and 

considered sheer force and bending moment at any 

edge, thereby correcting Kirchhoff assumptions [2-3]. 

Recently, with the development of science and 

technology, these findings of the recent century have 

attracted a great deal of attention for new devices. One 

of the newly emerging in the current century is MEMS 

technology, in which diaphragms are widely used in 

different forms for barometers, microphones, and 

actuators [4-5]. So far, three types of diaphragms 

known as simple, grooved, and embossed have been 

introduced, which are used for different purposes. In all 

these type of diaphragms, the support encompasses the 

diaphragm environment. In this paper, a design is 

presented and investigated in which the support is 

located in the center of the diaphragm, which is known 

as suspended diaphragm. This diaphragm has various 

uses in detecting sound waves. After colliding with this 

diaphragm, a sound wave causes the deflection on the 

edges, where this deflection can be measured by 

common reading mechanisms [6]. In reference [7], 

aembossed diaphragm whose circumference has been 

attached to the body has been examined, which is used 

in pressure sensors working in closed and vacuum 

systems. Suspended diaphragm can be applied in 

MEMS instruments, sensors, and actuators as upward 

and downward according to Fig. 1. Mechanically, both 

have the same analysis. This diaphragm is especially 

useful for sensors that are important in terms of 

mechanical force effect including pressure, sound, or 

flow. In this paper, static investigation of this type of 

diaphragm is investigated under different loadings, and 

the results are compared with finite element method 

through COMSOL software. 

Fig. 1. Two different modes of loading for suspended 

diaphragm. 

2. Principles of basic theory of

deflection of diaphragms

The behavior of sheets is such that they mostly tolerate 

the transverse load with bending. For this reason, 

bending stiffness and the torsional stiffness of sheet art 

important characteristics of sheets to bear the load 

exerted to them. Sheet stiffness depends on its 

thickness. Therefore, in order to investigate the theory 

of sheets, they are categorized into three groups in 

terms of dimensions/thickness ratio. The sheets are 

either thick, or thin, or too thin which are called 

membrane [8]. 

Kirchhoff-Law plane theory is a two-dimensional 

mathematical model used for determining the stress 

and deformity of thin planes undergoing force or 

momentum. Kirchhoff assumptions include basic 

assumptions dealing with investigating small deflection 

of the sheet. This theory is also known as classic theory 

of thin planes. Here, we use Kirchhoff-Law 

assumptions, and solve the problem assuming that the 

diaphragm thickness is small in relation to other 

dimensions. The first assumption of Kirchhoff-Law is 

that the deflection of the middle surface W remains 

without strain in comparison to the small plane 

thickness and in response to bending. The second 

assumption states that the stress perpendicular to the 

middle surface is negligible in comparison to the other 

elements of the stress and indeed the planes 

perpendicular to the middle surface remain 

perpendicular to the middle surface after bending. In 

addition, the loading should be such that it develops 

deflection by at most 10% of the diaphragm thickness 

in it. This extent of deflection is equal to a deviation of 

less than 1% from the linearity assumption of 

deflection and pressure relationship [8]. If the extent of 

deflection of the sheet is small against the thickness of 

the small sheet, the sheet deflection follows Eq. (1) [9]: 

∇4𝑤 = 𝑃    (1)

If the load exerted to the circular diaphragm and its 

boundary conditions are symmetrical and independent 

of θ, the deflection of diaphragm W will be only 

dependent on r, where these conditions are called 

symmetric bending of the sheet. In this case, Mrθ and 

Qθ are zero and only Mr, Mθ, and Qr should be 

considered. Therefore, the general Eq. (1) is simplified 

to Eq. (2) [9]: 
𝑑

𝑑𝑟
[
1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝑤

𝑑𝑟
)] = −

𝑄𝑟

𝐷
 (2) 

22



Jo
u
rn

al
 o

f 
Ir

an
ia

n
 A

ss
o
ci

at
io

n
 o

f 
E

le
ct

ri
ca

l 
an

d
 E

le
ct

ro
n
ic

s 
E

n
g
in

ee
rs

 -
 V

o
l.

1
5
- 

N
o
.4

- 
W

in
te

r 
2
0
1
8
 

 

 1397 زمستان –مماره چهارش -ال پانزدهمس -ونيک ايرانمجله انجمن مهندسي برق و الکتر

 

 

Qr is the sheer force per surface area unit and D 

represents the bending stiffness of the sheet, which are 

equal to the following respectively [9]: 

 

𝑄𝑟 =
1

2𝜋𝑟
∫ ∫ 𝑃𝑟𝑑𝑟𝑑𝜃

𝑟

0

2𝜋

0

=
𝑃𝑟

2
                                (3) 

 

P is the intensity of the exerted load and r shows the 

distance from the circle center [9]: 

𝐷 =
𝐸𝑡3

12(1 − 𝑣2)
                                                           (4) 

 

In the above relation, E is the Young modulus, t shows 

the sheet thickness, and v represents Poisson 

coefficient. Differential equation (2) has a specific 

solution resulting from Qr plus a general solution. The 

specific solution of the equation is determined based on 

the sheet loading, and is obtained by substituting 

Relation (3) into (2). The general solution of the 

equation which is solved assuming zero input of Eq. 

(2) is in the form of Relation (5) [9]: 

 

wℎ =
𝐶1

4
𝑟2 + 𝐶2𝑙𝑛𝑟 + 𝐶3                                       (5) 

 

Relation (5) holds true for each part of the diaphragm 

with any kind of boundary conditions, loading, and 

geometric conditions. Thus, along the radius of a 

diaphragm, if geometric or loading conditions changed, 

a separate deflection equation should be considered for 

each region, and continuity boundary conditions should 

also be considered for every boundary between them. 

Eventually, the diaphragm deflection is the sum of their 

specific and general solutions: 

 

W = Wℎ + W𝑝 

=
𝐶1

4
𝑟2 + 𝐶2𝑙𝑛𝑟 + 𝐶3 + W𝑝                                       (6) 

 

The constants in Relation (5) are obtained by applying 

boundary conditions to Relation (6). Boundary 

conditions are of two types: 1) static boundary 

conditions involving deflection and deflection slope at 

support boundaries as well as continuity between the 

two regions and center; 2) dynamic boundary 

conditions covering the sheer force and moment. The 

central boundary conditions: 

 

𝑊′(𝑟 = 0) = 0(7) 

 

This condition always makes C2 coefficient in Relation 

(5) zero. 

2.1. Continuity Boundary Conditions 

In the boundary of all regions in which they geometric 

and loading conditions of the diaphragm are changed, 

the deflection, deflection slope, and moment are equal 

with each other. 

The effective moment, sheer force, and transverse force 

for circular sheet under axial symmetrical loading are 

obtained from Relations (8)-(10), respectively [9,10]:  

 

𝑀𝑟 = −𝐷 [
𝑑2𝑤

𝑑𝑟2
+

𝑣

𝑟

𝑑𝑤

𝑑𝑟
]                                             (8) 

𝑄𝑟 = −𝐷
𝑑

𝑑𝑟
[
𝑑2𝑤

𝑑𝑟2
+

1

𝑟

𝑑𝑤

𝑑𝑟
]                                        (9) 

𝑉𝑟 = 𝑄𝑟 +
1

𝑟

𝜕𝑀𝑟𝜃

𝜕𝜃
                                                       (10) 

2.2. Boundary Conditions of Support 

Based on the constraints governing the sheet 

movement at external boundaries which are fixed or 

free (no support) or as see-saw movement, its boundary 

conditions are according to Table 1. 

 
Table. 1. Different types of support boundary conditions 

 

Condition 2 Condition 1 Type of support 

𝑀𝑟 = 0 𝑤 = 0 Simple 

𝑤 ′ = 0 𝑤 = 0 Fixed 

𝑉𝑟 = 0 𝑀𝑟 = 0 Free (No support) 

 

Here, the support boundary conditions are of free type, 

which has been stiffened in the center. The general 

solution of the equation is the sum of general and 

specific solution, and it is the specific solution to the 

input form which should satisfy differential equation 

(2) with Qr input. 

At free edges, Mr, Qr, and Mrt, are zero where r is the 

direction perpendicular to the plane and t is the 

direction tangential to the plane. On the other hand, in 

classic theory or Kirchhoff-Law, two conditions are 

met, to resolve which an approximate relation was 

presented by Kirchhoff. Since the moment at the free 

edge is zero, i.e. Mn=0, but due to the curvature of free 

edge, Mrt should also be zero, thus by approximating 

the torsional moment of the edge with transverse sheer 

force, Kirchhoff presented the second condition of the 

free edge as Relation (11) known as equivalent sheer 

force [9,10]: 

𝑉𝑟 = 𝑄𝑟 +
1

𝑟

𝜕𝑀𝑟𝜃

𝜕𝜃
                        (11) 

3. Suspended Diaphragm under 

Transverse Loading 

Considering the usage of diaphragm in pressure 

sensors, suspended diaphragm deflection is 

investigated under two types of loading: 1) uniform 

loading on the entire surface of the diaphragm; 2) 

loading on a circular region. 

23



 1397 ستانزم -چهارم هشمار -ال پانزدهمس -مجله انجمن مهندسي برق و الکترونيک ايران  

Jo
u
rn

al o
f Iran

ian
 A

sso
ciatio

n
 o

f E
lectrical an

d
 E

lectro
n
ics E

n
g
in

eers - V
o
l.1

5
- N

o
4
-W

in
ter 2

0
1
8
 

 

 

3.1. Suspended Diaphragm under Uniform 

Loading  

Assuming that the diaphragm radius is c and the radius 

of its central support is b, attached to a fixed support at 

the boundary of b, while being free and suspended at 

the boundary of c, the diaphragm loading under 

uniform load will be as Eq. (12): 

𝑄𝑟,𝑠.𝑢 =
𝑃𝑟

2
                                                                     (12) 

 

The specific solution resulting from this loading which 

is obtained by satisfying the main equation is a follows 

[9]: 

𝑊𝑝,𝑠.𝑢 =
𝑃

64𝐷
𝑟4                                                           (13) 

 

Fig. 2 represents the uniform loading plus parameters 

and boundary conditions. As can be observed, the 

arrows lie uniformly on the entire surface of the 

diaphragm, representing uniform load. 

 
Fig. 2. Loading mechanism and boundary condition in 

uniform loading.  

 

When applying the boundary conditions, the general 

solution and coefficients are obtained from Relations 

(14), which is the suspended diaphragm deflection 

equation with uniform loading: 

𝑊 =
𝐶1𝑠.𝑢𝑟2

4
+ 𝐶2𝑠.𝑢 log(𝑟) + 𝐶3𝑠.𝑢   

−
𝑃𝑟2(8𝑐2 −  8𝑐2 log(𝑟) + 𝑟2)

64𝐷1

 

(14) 

Where, the coefficients of this equation can be 

calculated by the following relations: 

 

𝐶1𝑠.𝑢 =
𝐴0 + 𝐴2𝑎2 + 𝐴4𝑎4

𝐵0 + 𝐵2𝑎2
                                      (15) 

 

Where, the coefficients of Eq. (15) can be calculated as 

Eqs. (16). 

𝐴0 = 𝑏4(1 − 𝑣) 

𝐴2 = 2𝑏2(1 − 𝑣) −  4 𝑏2 log(𝑏) (1 − 𝑣) 

𝐴4 = (1 + 3𝑣) −  4 log(𝑎) (1 + 𝑣) 

𝐵0 = −8𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 8𝐷1(𝑣 +  1) 
(16) 

Also: 

𝐶2𝑠.𝑢 =
𝐴2𝑎2 + 𝐴4𝑎4

𝐵0 + 𝐵2𝑎2
                                                 (17) 

Where, the coefficients of Eq. (17) can be calculated as 

Eqs. (18): 

𝐴2 = 𝑏4(𝑣 +  1) 

𝐴4 = 4𝑏2 (log (
𝑎

𝑏
)) (𝑣 +  1) − 𝑏2(𝑣 –  1) 

𝐵0 = −16𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 16𝐷1(𝑣 +  1) 

(18) 

and: 

𝐶3𝑠.𝑢 =
𝐴0 + 𝐴2𝑎2 + 𝐴4𝑎4

𝐵0 + 𝐵2𝑎2
                                   (19) 

 

Where, the coefficients of Eq. (19) can be calculated by 

Eqs. (20): 

 

𝐴0 = 𝑏6(𝑣 − 1) 

𝐴2 = 𝑏4(5 − 3𝑣) −  4𝑏4 log(𝑏) (𝑣 + 1) 

𝐴4 = 8 𝑏2 log(𝑎) (𝑣 + 1) + 4𝑏4 log(𝑏) (𝑣 + 3)
+ 𝑏2(𝑣 + 3)
+ 16𝑏2 log(𝑏2) (𝑣 + 1)
− 16𝑏2 𝑙𝑜𝑔(𝑎)log(𝑏) (𝑣 + 1) 

𝐵0 = −64𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 64𝐷1(𝑣 +  1) 

(20) 

According to Eq. (14), the diagrams of Figs. 3-6 the 

accuracy of the obtained theoretical relationship and 

the results of simulation have been compared. As seen 

in Fig. 3, the more we move farther away from the 

support, the extent of diaphragm deflection grows, and 

the bending behavior of the diaphragm changes linearly 

at farther points from the support. 

 
Fig. 3. Deflection of circular diaphragm under different 

and uniform pressures,c=250µm,b=50µmand 

t=2.5µm. 
 

 
Fig. 4. Deflection of circular diaphragm under uniform 

loading with different diaphragm radius, P=10Pa, 

b=50µm andt=2.5µm. 

 

Fig. 5 demonstrates the effect of the support radius. As 

can be observed, the more the radius of the support part 

increases, the extent of deflection diminishes 

24



Jo
u
rn

al
 o

f 
Ir

an
ia

n
 A

ss
o
ci

at
io

n
 o

f 
E

le
ct

ri
ca

l 
an

d
 E

le
ct

ro
n
ic

s 
E

n
g
in

ee
rs

 -
 V

o
l.

1
5
- 

N
o
.4

- 
W

in
te

r 
2
0
1
8
 

 

 1397 زمستان –مماره چهارش -ال پانزدهمس -ونيک ايرانمجله انجمن مهندسي برق و الکتر

 

 

dramatically since the rigid part of the diaphragm 

grows. 

 
Fig. 5. Deflection of circular diaphragm under uniform 

loading with different support radius, 

P=1000Pa,a=250µm andt=2.5µm. 

 
Fig. 6 demonstrates the effect of the diaphragm 

thickness. As can be seen, this thickness plays a 

significant role in the extent of deflection of the 

diaphragm. As the diagram thickness becomes larger 

than 4µm, the extent of deflection becomes trivial. 

Therefore, to use this structure in sensor usages, 

thicknesses smaller than 4 µm should be used.  

 

 
Fig. 6. Deflection of circular diaphragm under uniform 

loading with different diaphragm thickness, P=1000Pa, 

b=50µm anda=250µm. 

3.2. Suspended Diaphragm under Circular 

Loading 

In this case, a load as circular with internal radius of d 

and external radius of f has been considered, such that 

c>f>d>b. In this condition, three types of structural and 

loading regions should be considered. The entire 

structure is viewed in three regions: the internal region 

b<r<d, middle region d<r<f and external region f<r<c, 

represented by Indices 1, 2, 3, respectively. Region 3 

does not have any special changes at this loading. Fig. 

7 demonstrates the manner of loading, parameters, and 

boundary conditions. The place of arrows in this figure 

which is circular represents the manner of applying 

circular load. 

 
Fig. 7. Circular loading mechanism and parameters. 

 
In this condition, where the loading is circular, the 

loading for each region is: 

 

𝑄𝑟,s.r
(1)

=
𝑃(𝑓2 − 𝑑2)

2𝑟
 

𝑄𝑟,s.r
(2)

=
𝑃(𝑟2 − 𝑑2)

2𝑟
 

𝑄𝑟,s.r
(3)

= 0 

(21) 

The specific solution of the mentioned loadings is as 

follows, respectively: 

 

𝑊𝑝,s.r
(1)

=
𝑃𝑟2(𝑙𝑛𝑟 − 1)(𝑑2 − 𝑓2)

8𝐷
 

𝑊𝑝,s.r
(2)

=
𝑃𝑟2(8𝑓2 − 8𝑓2𝑙𝑛𝑟 + 𝑟2)

64𝐷
 

𝑊𝑝,s.r
(3)

= 0 

(22) 

The boundary conditions are fixed at edge b and free at 

edge c. In boundaries d and f, continuity conditions 

should hold true among the equations. Accordingly, the 

continuity conditions are as follows: 

 

𝑊s.r
(3)(𝑟 = 𝑓) = 𝑊s.r

(2)(𝑟 = 𝑓) 

𝑊(3)s.r
′ (𝑟 = 𝑓) = 𝑊(2)s.r

′ (𝑟 = 𝑓) 

𝑀𝑟,s.r
(3) (𝑟 = 𝑓) = 𝑀𝑟,s.r

(2) (𝑟 = 𝑓) 

𝑊s.r
(2)

(𝑟 = 𝑑) = 𝑊s.r
(1)

(𝑟 = 𝑑) 

𝑊(2)𝑝,s.r
′ (𝑟 = 𝑑) = 𝑊(1)𝑝,s.r

′ (𝑟 = 𝑑) 

𝑀𝑟,s.r
(2) (𝑟 = 𝑑) = 𝑀𝑟,s.r

(1) (𝑟 = 𝑑) 

(23) 

Given the boundary conditions and continuity 

conditions, the general equation of the suspended 

diaphragm deflection with circular loadings and the 

internal region b<r<d is obtained as follows: 

 

𝑊1 =
𝐶11 ce.u.e𝑟2

4
+𝐶21 ce.u.e log(𝑟) + 𝐶31 ce.u.e

−
𝑃𝑟2(log(𝑟) −  1)(𝑑2 − 𝑓2)

8𝐷1

 

(24) 

Where, that sheer moment is as follows: 

 

𝑀𝑟 = −𝐷 [
𝑑2𝑤

𝑑𝑟2
+

𝑣

𝑟

𝑑𝑤

𝑑𝑟
]                                        (25)  

By applying boundary conditions, the coefficients of 

the general equation become as follows: 

 

25
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𝐶11 ce.u.e =
𝐴0 + 𝐴2𝑎2

𝐵0 + 𝐵2𝑎2
                                         (26) 

 

Where, the coefficients of Eq. (26) can be calculated by 

Eqs. (27): 

 

𝐴0 = 𝑓4(𝑣 −  1) −  𝑑4(𝑣 −  1) + 2𝑏2𝑑2(𝑣 −  1)
−  2𝑏2𝑓2(𝑣 −  1)
+  4𝑏2𝑑2 log(𝑏) (𝑣 +  1)
−  4𝑏2𝑓2 log(𝑏) (𝑣 +  1) 

𝐴2 = 2𝑓2(𝑣 +  1) −  2𝑑2(𝑣 +  1)
+  4𝑑2 log(𝑑) (𝑣 +  1)
−  4𝑓2 log(𝑓) (𝑣 +  1) 

𝐵0 = −8𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 8𝐷1(𝑣 +  1) 

(27) 

 

Also: 

𝐶21 ce.u.e =
𝐴0 + 𝐴2𝑎2

𝐵0 + 𝐵2𝑎2
                                          (28) 

 

Where, the coefficients of Eq. (28) can be obtained as 

Eqs. (29): 

 

𝐴0 = (𝑏2𝑓4 − 𝑏2𝑑4)(1 –  𝑣) 

𝐴2 = 4𝑏2𝑑2 log (
𝑏

𝑑
) (𝑣 +  1)

− 4𝑏2𝑓2 log (
𝑏

𝑓
) (𝑣 +  1) 

𝐵0 = −16𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 16𝐷1(𝑣 +  1) 
(29) 

And: 

𝐶31 ce.u.e =
𝐴0 + 𝐴2𝑎2

𝐵0 + 𝐵2𝑎2
                                        (30) 

 

Where, the coefficients of Eq. (30) can be calculated by 

Eqs. (31): 

 

𝐴0 = 𝑏2𝑑4(𝑣 −  1) +  2𝑏4𝑑2(𝑣 −  1)
−  𝑏2𝑓4(𝑣 −  1) −  2𝑏4𝑓2(𝑣 −  1)
+  2𝑏2𝑑4 log(𝑏) (𝑣 +  1)
−  2𝑏2𝑓4 log(𝑏) (𝑣 +  1) 

𝐴2 = 2𝑏2𝑓2(𝑣 +  1) −  2𝑏2𝑑2(𝑣 +  1)

+  4𝑏2𝑑2 log (
𝑏

𝑑
) (𝑣 +  1)

−  8𝑏2𝑓2(𝑣 +  1)(log(𝑏) log(𝑓)
− log(𝑏)2)
− 8𝑏2𝑑2(log(𝑏)2

− log(𝑏) log(𝑑))(𝑣 +  1)

−  4𝑏2𝑓2 log (
𝑏

𝑓
) (𝑣 +  1) 

𝐵0 = −32𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 32𝐷1(𝑣 +  1) 

(31) 

 

Considering the boundary conditions of Eq. (23), the 

general equation of the suspended diaphragm 

deflection with circular loading is obtained in the 

middle region d<r<f: 

 

𝑊2 =
𝐶12 ce.u.e𝑟2

4
+ 𝐶22 ce.u.e log(𝑟) + 𝐶32 ce.u.e

−
𝑃𝑟2(8𝑓2 −  8𝑓2 log(𝑟) +  𝑟2)

64𝐷1

 

(32) 

 

By applying boundary conditions, the coefficients of 

the general equation for this region are: 

 

𝐶12 ce.u.e =
𝐴0 + 𝐴2𝑎2

𝐵0 + 𝐵2𝑎2
                                          (33) 

 

 

Where, the coefficients of Eq. (33) can be calculated by 

Eqs. (34): 

 

𝐴0 = −𝑑4(𝑣 − 1) + 𝑓4(𝑣 − 1) − 2𝑏2𝑓2(𝑣 − 1)

−  4𝑏2𝑑2 𝑙𝑜𝑔 (
𝑏

𝑑
) (𝑣 − 1)

+ 4𝑏2𝑓2 𝑙𝑜𝑔(𝑏) (𝑣 − 1) 

𝐴2 = 2 𝑓2(𝑣 + 1) − 4 𝑓2 𝑙𝑜𝑔(𝑓) (𝑣 + 1) 

𝐴0 = −8𝐷1𝑏2(𝑣 −  1) 

𝐴2 = 8𝐷1(𝑣 +  1) 
(34) 

Also: 

𝐶22 ce.u.e =
𝐴0 + 𝐴2𝑎2

𝐵0 + 𝐵2𝑎2
                                         (35) 

 

 

Where, the coefficients of Eq. (34) can be calculated as 

Eqs. (35): 

 

𝐴0 = −𝑏2𝑓4(𝑣 −  1) 

𝐴2 = 𝑑4(𝑣 +  1) +  4𝑏2𝑑2 log (
𝑏

𝑑
) (𝑣 +  1)

−  4𝑏2𝑓2 log (
𝑏

𝑓
) (𝑣 +  1) 

𝐵0 = −16𝐷1𝑏2(𝑣 −  1) 

𝐵2 = 16𝐷1(𝑣 +  1) 

(36) 

And: 

𝐶32 ce.u.e =
𝐴0 + 𝐴2𝑎2

𝐴0 + 𝐴2𝑎2
                                          (37) 

 

Where, the coefficients of Eq. (37) can be calculated as 

Eqs. (38): 

 

 

 

𝐴0 = 4𝑏4𝑑2(𝑣 −  1) −  3𝑏2𝑑4(𝑣 −  1)
−  2𝑏2𝑓4(𝑣 −  1) −  4𝑏4𝑓2(𝑣 −  1)

+  4𝑏2𝑑4 log (
𝑏

𝑑
) (𝑣 +  1)

− 4𝑏2𝑓4 log(𝑏) (𝑣 +  1) 
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𝐴2 = 5𝑑4(𝑣 +  1) − 4𝑏2𝑑2(𝑣 +  1)
+  4𝑏2𝑓2(𝑣 +  1)

+ 8𝑏2𝑑2 log (
𝑏

𝑑
) (𝑣 +  1)

− 16𝑏2𝑑2(log(𝑏)2

− log(𝑏) log(𝑑))(𝑣 +  1)
− 16𝑏2𝑓2(𝑣 +  1)(log(𝑏) log(𝑓)
− log(𝑏)2) − 4𝑑4 log(𝑑) (𝑣 +  1)

−  8𝑏2𝑓2 log (
𝑏

𝑓
) (𝑣 +  1) 

(38) 

 

In the diagrams of Figs. 8-12, the accuracy of the 

above relations has been shown using COMSOL 

simulation tools. The results in Figs. 8-10 represent 

that the behavior of this type of loading (circular 

loading) is the same as uniform loading, and only the 

extent of the diaphragm deflection has been lower in 

this type of loading. 

 

 

 
Fig. 8. Deflection of circular diaphragm under circular 

loading in different pressure, c=250µm, b=50µm 

andt=2.5µm. 

 

 

 
Fig. 9. Deflection of circular diaphragm under circular 

loading in different diaphragm radius, P=10Pa, f=c, 

b=50µm, d=150µm andt=2.5µm. 

 
Fig. 10. Deflection of circular diaphragm under circular 

loading in different support radius, P=1000Pa, f=c, 

c=250µm, d=150µm andt=2.5µm. 
 

Fig. 11 demonstrates that the more the circle of load 

exertion moves farther away from the support, the 

extent of deflection grows, but from 150 µm beyond, 

the effect of this parameter diminishes. Further, as the 

regional load exertion becomes narrower, the extent of 

deflection reaches saturation. 

 
Fig. 11. Deflection of circular diaphragm under circular 

loading in different support radius, P=1000Pa, f=c, 

c=250µm, b=50µm andt=2.5µm. 

 
Fig. 12 indicates that as the load exertion circle 

becomes widened, the extent of deflection grows 

almost linearly. This suggests that the linear behavior 

emerges at farther points from the support.  

 
Fig. 12. Deflection of circular diaphragm under circular 

loading in different outer radius of loading, P=1000Pa, 

b=50µm, c=250µm, d=150µm andt=2.5µm. 
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4. Comparing the Simple and 

Suspended Diaphragm  

The main difference between the suspended diaphragm 

and other diaphragms is the freeness of its 

circumference, while its fixedness in the center. This 

represents the flexibility of the diaphragm. In addition, 

due to the increase in the flexible circumference, the 

sum of total deflection of the surface is far greater than 

that of typical diaphragms. Fig. 13 compares the 

maximum deflection of suspended and simple 

diaphragms. As can be seen, the maximum deflection 

of the suspended diaphragms is almost twice as large as 

that of the simple diaphragm. This is considered a 

major advantage for sensors and operators that are 

dependent on that movement and deflection of 

diagrams. 

 
Fig. 13. Comparison of deflection between simple and 

suspended diaphragm.  

 

Fig. 14 shows that some of the total displacement of 

the diaphragm surface. The total deflection of the 

diaphragm means the changes in the capacitor capacity 

in capacitive sensors or the total sum of pressure 

exerted to the pumps. As can be observed, for 

suspended diaphragm with support radius of 50µm, it 

is around eight times that of the simple diaphragm with 

the same dimensions. This suggests that a capacitive 

sensor with suspended diaphragm is eight times 

equivalent to the simple diaphragm.  

 
Fig. 14. Comparison of total deflection between simple 

and suspended diaphragm.  

5. Conclusion 

In this paper, suspended diaphragm, a diaphragm 

attached from the middle to the support was introduced 

for making MEMS devices and was then analyzed by 

classic theory. Also, the accuracy of the relations was 

examined using finite element methods. The high 

accuracy of diagrams up to the error of at most 1% 

proves the accuracy of the obtained theories. In the part 

of comparing suspended and simple diaphragms, it was 

observed that the maximum deflection and sum of 

deflection are greater in the suspended diaphragm as 

compared to the simple diaphragm. In different uses, 

sensors and operators, this represents the advantage of 

suspended diaphragm.  
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